
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 323 (2009) 896–909

www.elsevier.com/locate/jsvi
An iterated maps approach for dynamic ratchetting in sdof
hysteretic damping systems

I.-S. Ahn�, S.S. Chen, G.F. Dargush

Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York, Buffalo,

NY 14260, USA

Received 20 March 2007; received in revised form 4 January 2009; accepted 8 January 2009

Handling Editor: C.L. Morfey

Available online 20 February 2009
Abstract

Dynamic ratchetting is a phenomenon in which plastic deformation increases in successive cycles. In the present paper,

first, various characteristics of dynamic ratchetting are demonstrated based on numerical simulation. Second, iterated

maps are developed as a tool for the investigation of dynamic ratchetting in a single degree of freedom (sdof) system. When

an elasto-perfectly-plastic model is employed to represent hysteretic damping, a piecewise linear solution can be obtained

and used to develop iterated maps. A stability investigation in the iterated maps shows that dynamic ratchetting is

developed under a stable cycling. In this stable cycling, dynamic ratchetting occurs when an excitation function loses

antiperiodicity (shift symmetry).

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Hysteresis is a material characteristic that exhibits different loading and unloading paths in the stress–strain
relationship for given stress or strain ranges [1]. Through hysteretic motion, energy in the system is dissipated
and, for example, this hysteretic damping is one of the major energy dissipation mechanisms used in the
seismic design of civil structures [2,3].

When multi-frequency sinusoidal excitations are applied to hysteretic damping systems, it is shown that the
plastic displacement may continuously increase in successive cycles [4]. This phenomenon is identified and
referred to as dynamic ratchetting in Ref. [5]. The occurrence of dynamic ratchetting depends on the plasticity
model used and excitation frequencies. Specifically, an elasto-perfectly-plastic model shows significant
dynamic ratchetting when excitation frequencies are commensurable and the product of terms comprising the
ratio is an even number. Dynamic ratchetting is a kind of ratchet, which in Ref. [6] is defined as ‘‘realization of
systems which produce a direct current (transport) from a fluctuating environment in the absence of gradient
and net forces.’’ Among ratchet phenomena in various systems and on various occasions [7], dynamic
ratchetting has an unique aspect that restoring forces are piecewise continuous functions, instead of
ee front matter r 2009 Elsevier Ltd. All rights reserved.

v.2009.01.009

ing author.

esses: iahn@buffalo.edu (I.-S. Ahn), ciechen@eng.buffalo.edu (S.S. Chen), gdargush@eng.buffalo.edu (G.F. Dargush).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.01.009
mailto:iahn@buffalo.edu
mailto:ciechen@eng.buffalo.edu
mailto:gdargush@eng.buffalo.edu


ARTICLE IN PRESS
I.-S. Ahn et al. / Journal of Sound and Vibration 323 (2009) 896–909 897
continuous functions derived from a potential function. Dynamic ratchetting has similarity to the more
ordinary ratchetting behavior found in material plasticity. In material plasticity, when applied stress cycles
have a nonzero mean, ratchetting may occur, resulting in a shortfall of safety and serviceability due to
excessive plastic deformation or due to excessive cycles of low-cycle fatigue [1,8]. The same consequences may
be expected through dynamic ratchetting under sinusoidal excitations and earthquakes [4].

In the present paper, iterated maps are introduced to investigate the evolution and stability of dynamic
ratchetting in hysteretic damping systems with an elasto-perfectly-plastic model. Iterated maps can be
developed from numerical methods, but here the piecewise linear solutions are employed instead. Piecewise
linear solutions are not analytical solutions that provide an explicit relationship between input and output or
between parameters and output. However, when feasible, piecewise solutions provide significant in-depth
information for dynamic systems. The development of piecewise linear solution can be found in various
dynamic systems such as vibro-impact systems [9,10], bi-linear systems [11,12], friction systems [13], and slider
systems with an impacting mass [14–16].

In various nonlinear dynamic systems, an iterated maps approach is a powerful tool for the investigation of
motion. The adoption of iterated maps for vibro-impact system and hysteretic damping system can be found
in Refs. [9,17], respectively. The similarities and differences between the present study and [17] are discussed in
following sections. Due to inherited limitations of iterated maps, it is difficult or impractical to apply this
approach to dynamic systems having more than one variable. The simplicity and efficiency of iterated maps
cannot be maintained in multi degrees-of-freedom systems or systems with more complicated plasticity
models. Consequently, here the focus is on single degree of freedom (sdof) elasto-perfectly-plastic systems.
2. Governing equations and piecewise linear solution

When a mass, m, connected to an elasto-perfectly-plastic hysteretic damping element, is subjected to multi-
frequency excitations as in Fig. 1(a), the dynamic governing equation becomes:

m
d2U

dt02
þ F U ;

dU

dt0

� �
¼
XM
i¼1

Pi sinO0it
0, (1)
     f
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Fig. 1. Single degree of freedom hysteretic damping model: (a) Force-displacement relationship, (b) Cart model for elasto-perfectly-plastic

model, and (c) Free body diagrams.
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with

F

dt0
U ;

dU

dt0

� �
¼

k
dU

dt0
if F 2oF 2

y;

0 else;

8<
:

where t0 is real time, M represents number of excitation frequencies, k is pre-yielding stiffness, and Fy is
yielding force.

The definition of force-rate, dF=dt0, is derived by integrating the stress rate–strain rate material plasticity
relationship over the domain. The effects from viscous damping will also be investigated in a later section. After
the introduction of yielding displacement Uy ¼ Fy=k, the nondimensional version of Eq. (1) is expressed as

€uþ f ðu; _uÞ ¼ EðtÞ, (2)

with

EðtÞ ¼
XM
i¼1

pi sinOit ; _f ðu; _uÞ ¼
_u if f 2o1;

0 else;

(

where T 0 ¼
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 1=o, t ¼ t0=T 0, u ¼ U=Uy, pi ¼ T 02=mUyPi, Oi ¼ O0iT

0 ¼ O0i=o, and _u ¼ du=dt. Notice
that in Eq. (2), _u is used for the derivative with respect to nondimensional time t.

In Fig. 1(b), the dynamic motion of a sdof hysteretic damping system is presented by a mass loaded in a
massless cart connected by springs to the wall. When excitations are applied to the mass, the mass will
oscillate. If the amplitude of oscillation increases, the mass touches the wall, and both will move together. Two
displacements are introduced; u1 represents the distance from the center of the cart to the center of the mass,
and u2 represents the distance of the center of the cart from the initial position. When accounting for the
motion with hysteretic damping, the yield surface of the elasto-perfectly-plastic model corresponds to the wall
of the cart. The cart can move freely to the left or right, which simulates the movement of the yield surface in
the elasto-perfectly-plastic model. Following this analogy, the elastic and plastic deformations of the body are
equivalent to u1 and u2, respectively. Thus,

u ¼ ue þ up; ue ¼ u1; up ¼ u2, (3)

where ue is the elastic deformation and up is the plastic deformation.
Based on the mass in the cart model in Fig. 1(b), the governing equations of dynamic motion are developed.

Until the mass touches the wall, the motion of the mass is linear forced vibration such as:

€ue þ ue ¼
XM
i¼1

pi sinOit. (4)

If the mass touches the wall (when juej ¼ 1), the cart will move with the mass, ignoring any bounce of the
mass. Free-body diagrams in Fig. 1(c) show two possible scenarios. The force R in the diagram is the spring
force when it is deformed by 1 (i.e., by a unit nondimensional yield displacement). The governing equation for
each case becomes:

€up þ R ¼
XM
i¼1

pi sinOit for _up40,

€up � R ¼
XM
i¼1

pi sinOit for _upo0. (5)

The solution of Eq. (4) can be written

ue

_ue

( )
¼

sinðtÞ cosðtÞ

cosðtÞ � sinðtÞ
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8>>>><
>>>>:

9>>>>=
>>>>;
, (6)
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while the solution of Eq. (5) becomes:

up

_up

( )
¼

t 1

1 0

� �
C

D

� �
þ

�
R

2
t2 �

PM
i¼1

pi

O2
i

sinOit

�Rt�
PM
i¼1

Oipi

Oi

cosOit

8>>>><
>>>>:

9>>>>=
>>>>;
. (7)

The þ sign in the terms ðR=2Þt2 and Rt in Eq. (7) corresponds to the case when _upo0 (and � sign for _up40).
Constants, A, B, C, and D are determined from known displacement, uo, and velocity, _uo, at a specific time to.

The change of state from elastic to plastic occurs when the mass hits the cart as in Fig. 1(c), which
corresponds to the moment when an elastic deformation, ue, is either 1 or �1. The change from plastic to
elastic occurs when the velocity changes its sign. At the points of state change in Fig. 1(a), elastic deformation
ðueoÞ, plastic deformation ðupoÞ, and velocity ð _uÞ at each point, 1, 2, 3, 4, and ð10Þ can be pre-defined as

Point 1: t ¼ t1; ueo ¼ 1; upo ¼ up; _u ¼ 0,

Point 2: t ¼ t2; ueo ¼ �1; upo ¼ up; _u ¼ _ueðt2Þ,

Point 3: t ¼ t3; ueo ¼ �1; upo ¼ up þ Du�p ; _u ¼ 0,

Point 4: t ¼ t4; ueo ¼ 1; upo ¼ up þ Du�p ; _u ¼ _ueðt4Þ,

Point 10 : t ¼ t10 ; ueo ¼ 1; upo ¼ up þ Du�p þ Duþp ; _u ¼ 0.

If the current motion is in an elastic state (between Point 1 and Point 2 or between Point 3 and Point 4 in
Fig. 1(a)), the transition time t2 from elastic to the lower branch of plastic response and the transition time t4
from elastic to the upper branch of plastic response are determined by solving Eq. (8), such as

ueðt2Þ ¼ A sinðt2Þ þ B cosðt2Þ þ
XM
i¼1

pi

ð1� O2
i Þ
sinOit2 ¼ �1,

ueðt4Þ ¼ A sinðt4Þ þ B cosðt4Þ þ
XM
i¼1

pi

ð1� O2
i Þ
sinOit4 ¼ 1. (8)

Also the transition times, t3 and t10 , from plastic to elastic response are determined by solving the following
equations:

_upðt3Þ ¼ C þ Rt3 �
XM
i¼1

pi

Oi

cosOit3 ¼ 0,

_upðt10 Þ ¼ C � Rt10 �
XM
i¼1

pi

Oi

cosOit10 ¼ 0. (9)

Because the solutions of each state (elastic or plastic) and the conditions of transition are known, the dynamic
motion can be determined uniquely for a given initial condition. However, a closed-form solution cannot be
obtained because there are no analytical solutions for Eqs. (8) and (9). To acquire transition times, a numerical
solver such as the Newton–Raphson technique can be utilized. In a later section, piecewise linear solutions are
used for the development of iterated maps.

3. Dynamic ratchetting behavior

Dynamic ratchetting is a phenomenon such that the plastic deformation increases continuously in successive
cycles in hysteretic damping dynamic systems. In particular, this phenomenon can only be observed when the
frequencies of an excitation are in integer ratios, i.e. commensurable, and the product of terms comprising the
ratio is an even number. In order to characterize dynamic ratchetting, the governing equation, Eq. (2), is
solved by the Runge–Kutta method. In the analyses, the time step is 0.01 seconds or 1

20
th of the smallest period

between excitation frequencies. In Fig. 2, responses from three different viscous damping values are compared
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where x is the nondimensional critical damping ratio. Although the level of x influences the amount of
accumulated deformation, dynamic ratchetting does occur even in the presence of significant viscous damping.
In the following discussion, therefore, viscous damping is not included.

Fig. 3 shows a contour plot of absolute values of the maximum displacements for 2,000 nondimensional
time units. Amplitudes of applied excitations are fixed to 1.0, i.e. p1 ¼ p2 ¼ 1, and frequencies are changed
from 0.0 to 5.0. The corresponding three-dimensional plot is added in the upper right side. Out-of-range
regions near the origin are not from dynamic ratchetting, but from the nearly static loading situation. The
regions having dynamic ratchetting are arranged by lines corresponding to specific frequency ratios. Dynamic
ratchetting becomes significant when two applied frequencies are represented by an integer ratio, n : m, and
their product n�m, is an even number. So n : m ¼ 1 : 2; 2 : 3; 2 : 5; . . . are cases that have severe dynamic
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Fig. 2. Sensitivity of dynamic ratchetting to viscous damping ðO1 ¼ 0:8;O2 ¼ 0:4Þ: (a) x ¼ 0:03, (b) x ¼ 0:05, and (c) x ¼ 0:1.
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ratchetting, but there is no dynamic ratchetting when n : m ¼ 1 : 3; 1 : 5; 3 : 5; . . .. Another observation is
dynamic ratchetting effects are greater if the n�m value is smaller. For example, compare 1:2 and 1:8 cases.

In Fig. 4, four Poincaré sections [18] of 1:4 commensurable frequencies are generated for four different
amplitudes of excitations. For this, and all subsequent Poincaré section plots, 2p=O1 is used for the sampling
period. Based on this sampling rate, displacement, velocity, and the restoring force are taken and used to
generate the Poincaré section. When the amplitudes are small in Figs. 4(a) and (b), the observed limit-cyclic
motions are represented by four discrete points. When the amplitude increases, the four points translate in the
force–displacement plane with bounded velocities as in Figs. 4(c) and (d). This translation of the displacement
in the force-displacement plane corresponds to dynamic ratchetting.

Fig. 5 depicts the Poincaré sections of incommensurable frequencies. With O1 ¼ 0:8 and O2 �
ffiffiffi
2
p

=5, the
frequency ratio is close to 1:4, which can be compared to Fig. 4. For incommensurable frequencies, figures
show quasi-periodic motions, which are bounded even for larger amplitudes of excitations. More specifically,
four ellipses from mostly linear oscillations are observed when amplitudes are small. These ellipses coalesce
into one closed curve (Figs. 5(b) and (c)) when amplitudes increase.

These changes are presented for another frequency combination in Fig. 6, where O1 ¼ 4:0 and O2 �
ffiffiffi
2
p

are
used. When the amplitude is small (Fig. 6(a)), the contribution from the natural frequency (i.e. 1.0) is shown as
four distinct sets of points because of the 1:4 frequency ratio. The contribution from the frequency

ffiffiffi
2
p

can be
identified by a circular shape because of quasi-periodic motions from the 1 :

ffiffiffi
2
p

frequency ratio. When the
amplitude increases, the size of ellipses increases, and ellipses are overlapped (Figs. 6(b) and (c)). Under larger
amplitude, four ellipses from the 1 :

ffiffiffi
2
p

combination coalesce into one ellipse because of the
ffiffiffi
2
p

: 4
combination (Figs. 6(d) and (e)). In Fig. 6(f), the large ellipse from the

ffiffiffi
2
p

: 4 combination survives for even
larger amplitude and makes the motion bounded.

When three frequencies are employed in the excitation functions, the same argument can be made. Dynamic
ratchetting does not occur if the product of the integer ratios, m� n� k , makes an odd number. Fig. 7 shows
displacement time histories of two such cases. To make this argument applicable to M frequency excitations, it
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can be stated that there is no dynamic ratchetting in commensurable frequency excitations if the product of
integers in the frequency ratio is an odd number such as:

YM
i¼1

ri ¼ odd number, (10)

where

O1

r1
¼

O2

r2
¼ � � � ¼

Om

rm

.

This condition is satisfied only if all ri are odd numbers, which is a very rare case in M commensurable
frequency excitations. Therefore, most multi-frequency excitations contain more than one frequency
combination that can develop dynamic ratchetting.
4. Iterated maps

Many of the techniques used in contemporary research on nonlinear dynamical systems originate from the
work of Poincaré [18]. In particular, iterated maps have been used for the investigation of various nonlinear
dynamic problems [19–22]. For some piecewise linear dynamic systems, the number of variables is reduced to
one so that an iterated maps approach becomes a powerful tool. Shaw and Holmes [9] used iterated maps for a
perfectly plastic vibro-impact system, where discontinuous map functions were used for stability investigation.
Miller and Butler [17] developed iterated maps for an elasto-perfectly-plastic hysteretic damping system. In
these studies, transition time, when the motion changes from one state to another, was taken as an
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independent variable. Applying iterated maps in Ref. [17] to dynamic ratchetting, however, has a limitation
because only single frequency excitations were considered.

A stable hysteretic loop should include at least one of each Point 1 (state p) and Point 3 (state m) in Fig. 1(a).
The maps from one state to another are obtained from the relations given in Eqs. (6) and (7). For example,
when the current state is p at time t1, the known elastic displacement ðue ¼ 1Þ and velocity ð _u ¼ 0Þ are used to
calculate constants A and B in Eq. (6). The times t2 and t4 are known by solving Eq. (8). Two constants C and
D are also determined from the plastic displacement and velocity at this moment. For the known t2, the upper
equation in Eq. (9) is used to acquire t3, and the lower one is used to acquire t01 from the known t4. When this
procedure is repeated for varying t1, the relationship from t1 to t3 and from t1 to t01 can be obtained, which
consists of the p–m map and p–p map, respectively. Between two possible states, m will follow if t2ot4.
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Otherwise p will follow. In the investigation of dynamic ratchetting, four maps, p–m, p–p, m–p, and m–m

maps, are necessary to represent dynamic motion. The maps derived in Ref. [17] were p–m and m–p maps, and
the shape of the two are the same.

When ti is used to represent the modulus of time ti in Fig. 1(a) to the fixed period of motion T , such as

ti ¼ the remainder of
ti

T

� �
; 0ptio1; i ¼ 1; 2; 3; 4, (11)

the definition of four maps thus becomes

p2p map: t1 ¼ f p
pðt1Þ,

p2m map: t3 ¼ f m
p ðt1Þ,

m2p map: t1 ¼ f p
mðt3Þ,

m2m map: t3 ¼ f m
mðt3Þ. (12)

Fig. 8 shows the behavior of each map function schematically.
In iterated maps, the tðnÞ axis represents t1 or t3 in the current state and the tðnþ 1Þ axis represents t1 or t3

in the following state. For a sdof system under dual frequency excitations, the governing equation is:

d2u

dt2
þ f ðu; _uÞ ¼ ð1� �Þp1 sinðO1tÞ þ �p2 sinðO2tÞ. (13)
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The parameter � is introduced to control the relative amplitude between two applied excitations. The cases of
� ¼ 0 and 1 correspond to uni-frequency oscillations. In order to study the frequency ratio dependence of
commensurable frequency excitations, three sets of dual frequencies are selected: O1 ¼ 0:45, O2 ¼ 0:9;
O1 ¼ 0:3, O2 ¼ 0:9; O1 ¼ 0:6, O2 ¼ 0:9. These frequencies make 1:2, 1:3, and 2:3 frequency ratios, respectively.
From numerical simulations in the previous section, the 1:2 ratio excitation produces the most severe dynamic
ratchetting. On the other hand, the 1:3 ratio does not produce dynamic ratchetting.

Fig. 9 shows the iterated maps, when O1 ¼ 0:45, O2 ¼ 0:9, and � ¼ 0:2. Motions evolve and eventually
converge into a stable cycling that can be identified by two stable points, t�1 on the m–p map and t�3 on the p–m
map. The absolute values of slopes of map functions at two stable points are slightly less than 1. Therefore,
there is no bifurcation of the stable points. However, it takes a very long time for the motion to reach a stable
cycling. If symbol e represents the elastic state, the stable cycling can be expressed as e:p:e:m, where : indicates
the change of state. The two examples in Fig. 10 show the iterated maps when the frequency ratio is 1:3
ðO1 ¼ 0:3;O2 ¼ 0:9Þ. The stable cycling for � ¼ 0:2 is e:p:e:m, whereas it is e:p:e:p:e:m:e:m for � ¼ 0:5. In
Fig. 10(b), two stable points (0.238 and 0.738) are on the p–p map and the m–m map. Fig. 11 shows iterated
maps and stable cycling for � ¼ 0:2 and 0.5 when the frequency ratio is 2:3. The stable cycling for � ¼ 0:2 is
e:p:e:m:e:p:e:m, and it becomes e:p:e:m:e:p:e:p:e:m for � ¼ 0:5. In Fig. 12, the stable points of stable cycling are
depicted with varying � values. The figures show that a unique stable cycling is developed for every �.

It should be noted that the p–p map and the m–m map are needed for identifying stable cycling that includes
e:p:e:p or e:m:e:m patterns. Under an uni-frequency excitation, a stable cycling contains neither the p–p map
nor the m–m map, and the m–p map and the p–m map are the same shape. So either p–m or m–p map is
sufficient to represent the motion as was utilized in [17].

5. Symmetry in dynamic ratchetting

In the previous section, it is shown that there exists a unique stable cycling for commensurable dual-
frequency excitations. In the plastic regime of a stable cycling, it is interesting to notice that the plastic
deformation is not an independent variable. So the existence of a stable cycling does not imply the
boundedness of plastic deformation. Actually, dynamic ratchetting is related to the characteristics of
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excitations, which can be represented by the symmetry of iterated maps. Under commensurable frequencies,
first, the symmetry of the m–p map and the p–m map needs to be discussed. When plastic deformations are
separated into positive components and negative components, they can be canceled out if two iterated maps,
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f m
p (m–p map) and f p

m (p–m map), have symmetry such that

f m
p ðt1Þ ¼ f p

mðt1 þ 0:5Þ þ 0:5,

f p
mðt3Þ ¼ f m

p ðt3 þ 0:5Þ þ 0:5. (14)

This symmetry has been observed in iterated maps under uni-frequency excitations. Fig. 13 shows iterated
maps of an uni-frequency excitation. Symmetry in Eq. (14) is shown as having the same shape between the
sub-plane I and IV and between the sub-plane II and III in the figure with changes between the p–p map and
the m–m map; and between the m–p map and the p–m map. The symmetric iterated maps also occur under 1:3
frequency ratio excitation (Fig. 10).
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When frequencies have commensurable ratios and their product makes an even number, the symmetry of
iterated maps is broken and dynamic ratchetting is developed. The existence of this kind of symmetry is
discussed further in the recent work by Challamel, Lanos, Hammouda, and Redjel [23]. The symmetry of
iterated maps corresponds to a shift symmetry of an antiperiodic excitation function, EðtÞ ¼ �Eðtþ T=2Þ,
where T represents the period of the lower frequency excitation contained in EðtÞ. When this symmetry is
broken, then the subject system can develop dynamic ratchetting, and this corresponds to the general
symmetry requirements of ratchets [7,24].

Because dynamic ratchetting is directly related with excitation functions, these functions need to be selected
with great care in analyses. For example, earthquake strong motions may contain commensurable frequency
content that develop dynamic ratchetting. However, the selection of strong motion in design and assessment of
structures has not been considered from this point of view yet, and results from analyzes may contain
inconsistent dynamic ratchetting effects.

6. Summary and conclusions

In the present study, the characteristics of dynamic ratchetting are investigated based on numerical
simulations, and iterated maps are derived from piecewise linear solutions. Piecewise linear solutions are
derived for a sdof dynamic system having elasto-perfectly-plastic hysteretic damping under multi-frequency
sinusoidal excitations. Iterated maps developed from piecewise solutions show that dynamic ratchetting occurs
through a stable cycling.

Under commensurable frequency excitations, there is no dynamic ratchetting when the product of terms
comprising the integer ratio is an odd number. For iterated maps, this condition exhibits symmetry between
maps, which corresponds to general shift symmetry condition of antiperiodic excitation functions,
EðtÞ ¼ �Eðtþ T=2Þ, of ratchets. When the product of terms is an even number, the symmetry is broken
and dynamic ratchetting occurs. The fact that the source of dynamic ratchetting exists in the excitation
functions emphasizes the importance of excitation function selection in nonlinear dynamic analysis, such as in
earthquake engineering and seismic design.

Even though it is not discussed in the present paper, numerical simulations of various sdof and mdof (Multi
Degrees of Freedom) systems under recorded earthquake strong motions do indicate dynamic ratchetting.
Application of an iterated maps approach to these systems, however, is not straight forward because of the
increased number of variables.
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